7 research outputs found

    An AI-Layered with Multi-Agent Systems Architecture for Prognostics Health Management of Smart Transformers:A Novel Approach for Smart Grid-Ready Energy Management Systems

    Get PDF
    After the massive integration of distributed energy resources, energy storage systems and the charging stations of electric vehicles, it has become very difficult to implement an efficient grid energy management system regarding the unmanageable behavior of the power flow within the grid, which can cause many critical problems in different grid stages, typically in the substations, such as failures, blackouts, and power transformer explosions. However, the current digital transition toward Energy 4.0 in Smart Grids allows the integration of smart solutions to substations by integrating smart sensors and implementing new control and monitoring techniques. This paper is proposing a hybrid artificial intelligence multilayer for power transformers, integrating different diagnostic algorithms, Health Index, and life-loss estimation approaches. After gathering different datasets, this paper presents an exhaustive algorithm comparative study to select the best fit models. This developed architecture for prognostic (PHM) health management is a hybrid interaction between evolutionary support vector machine, random forest, k-nearest neighbor, and linear regression-based models connected to an online monitoring system of the power transformer; these interactions are calculating the important key performance indicators which are related to alarms and a smart energy management system that gives decisions on the load management, the power factor control, and the maintenance schedule planning

    Smart Energy Management System: Design of a Monitoring and Peak Load Forecasting System for an Experimental Open-Pit Mine

    No full text
    Digitization in the mining industry and machine learning applications have improved the production by showing insights in different components. Energy consumption is one of the key components to improve the industry’s performance in a smart way that requires a very low investment. This study represents a new hardware, software, and data processing infrastructure for open-pit mines to overcome the energy 4.0 transition and digital transformation. The main goal of this infrastructure is adding an artificial intelligence layer to energy use in an experimental open-pit mine and giving insights on energy consumption and electrical grid quality. The achievement of these goals will ease the decision-making stage for maintenance and energy managers according to ISO 50001 standards. In order to minimize the energy consumption, which impact directly the profit and the efficiency of the industry, a design of a monitoring and peak load forecasting system was proposed and tested on the experimental open-pit mine of Benguerir. The main challenges of the application were the monitoring of typical loads machines per stage, feeding the supervisors by real time energy data on the same process SCADA view, parallel integrating hardware solutions to the same process control system, proposing a fast forest quantile regression algorithm to predict the energy demand response based on the data of different historical scenarios, finding correlations between the KPIs of energy consumption, mine production process and giving global insights on the electrical grid quality

    Smart Energy Management System: Design of a Monitoring and Peak Load Forecasting System for an Experimental Open-Pit Mine

    No full text
    Digitization in the mining industry and machine learning applications have improved the production by showing insights in different components. Energy consumption is one of the key components to improve the industry’s performance in a smart way that requires a very low investment. This study represents a new hardware, software, and data processing infrastructure for open-pit mines to overcome the energy 4.0 transition and digital transformation. The main goal of this infrastructure is adding an artificial intelligence layer to energy use in an experimental open-pit mine and giving insights on energy consumption and electrical grid quality. The achievement of these goals will ease the decision-making stage for maintenance and energy managers according to ISO 50001 standards. In order to minimize the energy consumption, which impact directly the profit and the efficiency of the industry, a design of a monitoring and peak load forecasting system was proposed and tested on the experimental open-pit mine of Benguerir. The main challenges of the application were the monitoring of typical loads machines per stage, feeding the supervisors by real time energy data on the same process SCADA view, parallel integrating hardware solutions to the same process control system, proposing a fast forest quantile regression algorithm to predict the energy demand response based on the data of different historical scenarios, finding correlations between the KPIs of energy consumption, mine production process and giving global insights on the electrical grid quality

    Fixed-Time Fractional-Order Sliding Mode Control for UAVs under External Disturbances

    No full text
    The present paper investigates a fixed-time tracking control with fractional-order dynamics for a quadrotor subjected to external disturbances. After giving the formulation problem of a quadrotor system with six subsystems like a second-order system, a fractional-order sliding manifold is then designed to achieve a fixed-time convergence of the state variables. In order to cope with the upper bound of the disturbances, a switching fixed-time controller is added to the equivalent control law. Based on the switching law, fixed-time stability is ensured. All analysis and stability are proved using the Lyapunov approach. Finally, the higher performance of the proposed controller fixed-time fractional-order sliding mode control (FTFOSMC) is successfully compared to the two existing techniques through numerical simulations

    Fuzzy Sliding Mode Control for Photovoltaic System

    No full text
    In this study, a fuzzy sliding mode control (FSMC) based maximum power point tracking strategy has been applied for photovoltaic (PV) system. The key idea of the proposed technique is to combine the performances of the fuzzy logic and the sliding mode control in order to improve the generated power for a given set of climatic conditions. Different from traditional sliding mode control, the developed FSMC integrates two parts. The first part uses a fuzzy logic controller with two inputs and 25 rules as an equivalent controller while the second part is designed for an online adjusting of the switching controller’s gain using a fuzzy tuner with one input and one output. Simulation results showed the effectiveness of the proposed approach achieving maximum power point. The fuzzy sliding mode (FSM) controller takes less time to track the maximum power point, reduced the oscillation around the operating point and also removed the chattering phenomena that could lead to decrease the efficiency of the photovoltaic system

    Smart Energy Management System: Design of a Smart Grid Test Bench for Educational Purposes

    No full text
    The presented article aims to design an educational test bench setup for smart grids and renewable energies with multiple features and techniques used in a microgrid. The test bench is designed for students, laboratory engineers, and researchers, which enables electrical microgrid system studies and testing of new, advanced control algorithms to optimize the energy efficiency. The idea behind this work is to design hybrid energy sources, such as wind power, solar photovoltaic power, hydroelectric power, hydrogen energy, and different types of energy storage systems such as batteries, pumped storage, and flywheel, integrating different electrical loads. The user can visualize the state of the components of each emulated scenario through an open-source software that interacts and communicates using OPC Unified Architecture protocol. The researchers can test and validate new solutions to manage the energy behavior in the grid using machine learning and optimization algorithms integrated in the software in form of blocks that can be modified and improved, and then simulate the results. A model-based system of engineering is provided, which describes the different requirements and case studies of the designed test bench, respecting the open-source software and the frugal innovation features in which there is use of low-cost hardware and open-source software. The users obtain the opportunity to add new sources and new loads, change software platforms, and communicate with other simulators and equipment. The students can understand the different features of smart grids, such as defect classification, energy forecasting, energy optimization, and basics of production, transmission, and consumption
    corecore